Morphological Classification of Chemical Structural Units

by A. Górski

Department of Chemistry, Warsaw University of Technology,
Noakowskiego 3, 00-664 Warszawa, Poland

(Received May 24th, 2000; revised manuscript October 24th, 2000)

A new classification of chemical structural units (csu), based on their elemental chemical transformations, is presented. It originates from a new uniform numerical definitions of acids, bases, oxidators and reductors and a new numerical approach to the periodic chart of elements. According to these assumptions csu and their combinations are distributed in a multi-dimensional classification space. Much attention has been paid to prove experimentally that the virtual classification steps present the real steps of chemical reactions of csu. Thermal decomposition stages as well as syntheses of salts in solid state were investigated. Applications of classification presented in research and didactics have been discussed.
Spectroscopic and Polarographic Studies of Novel Imidazole Adduct of Ammonium Trioxovanadate(V). A Solution and Solid State Study

by S. Çakir¹, E. Biçer¹, P. Naumov² and O. Çakir¹

¹Department of Chemistry, Faculty of Arts and Sciences, Ondokaz Mayis University, 55139 Karupelit–Samsun, Turkey
²Institute of Chemistry, Faculty of Science, “Sv. Kiril i Metodij” University, PO Box 162, MK–91001 Skopje, Macedonia

(Received July 24th, 2000; revised manuscript September 26th, 2000)

Complex formation between ammonium trioxovanadate(V) and imidazole has been studied and characterized by FT IR, UV/Vis, thermal analysis (TG, DTA, DTG) and polarographic techniques. Species formed in solid phase yield a yellow coloured product exhibiting an absorbance maximum at 400 nm. The FT IR spectra show that the inclusion of imidazole has a significant influence on the structure and the hydrogen bonding pattern in NH₄VO₃. Species formed in aqueous solution has been examined by voltammetry. Formation of an adduct of trioxovanadate(V) with imidazole onto dropping mercury electrode followed by reduction of the sample in DCP of the complex in 0.05 M NH₄/NH₄Cl buffer (pH 9.08) resulted in a single peak at –0.875 V.
New Polymeric Copper(II) Complexes with Tributyl Phosphite and Perfluorinated Carboxylates

by E. Szylik¹, I. Szymańska¹, R. Kucharek¹, G. Wrzeszcz¹ and F. Rozpłoch²

¹Nicholas Copernicus University, Department of Chemistry, 87-100 Toruń, Poland
²Nicholas Copernicus University, Department of Physics, 87-100 Toruń, Poland
e-mail: eszyl@chem.uni.torun.pl

(Received April 21st, 2000; revised manuscript October 2nd, 2000)

New Cu(II) complexes with tributyl phosphite and aliphatic perfluorinated carboxylates \([Cu\{P(OBu)\}_3 \} (\mu-OH)(\mu-RCOO)]_n\), where \(R = CF_3, C_2F_5, C_3F_7, C_6F_{13}, C_7F_{15}\), were obtained and their spectroscopic (UV-VIS, EPR, MS, IR) and thermal properties were studied. Mass spectra were in favour of the bridging coordination carboxylates and monodentate phosphite and suggest a polymeric structure. EPR spectra and magnetic susceptibility measurements indicate the formation of pentacoordinated Cu(II) in polymeric complexes. Examination of COO absorption bands suggests bridging carboxylates as well as a hydroxo group, whereas tributyl phosphite is monodentately bonded. Thermal decomposition is a multistage process, which in nitrogen and air yields a mixture of Cu₂O and Cu₂P₂O₇.
Synthesis and Magnetic Properties of Heterobinuclear Copper(II)–Manganese(II) Complexes with N,N'-Bis[2-(dimethylamino)ethyl]oxamide as Ligand

by Y.-T. Li¹, C.-W. Yan² and S.-H. Miao¹

¹Department of Chemistry, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
²Department of Biology, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
(Received September 9th, 2000; revised manuscript October 17th, 2000)

Four new copper(II)–manganese(II) heterobinuclear complexes bridged by N,N'-bis[2-(dimethylamino)ethyl]oxamido dianion (dmoxae) and end-capped with 2,2'-bipyridine (bpy); 4,4'-dimethyl-2,2'-bipyridine (Me₂-bpy); 5-chloro-1,10-phenanthroline (Cl-phen) or 5-bromo-1,10-phenanthroline (Br-phen), respectively, namely, [Cu(dmoxae)MnL₂](ClO₄)₂ (L = bpy, Me₂-bpy, Cl-phen, Br-phen), have been synthesized and characterized by elemental analyses, IR and electronic spectra studies and molar conductivity measurements. The electronic reflectance spectrum indicates the presence of exchange-coupling interaction between bridging copper(II) and manganese(II) ions. The cryomagnetic measurements (4.2–300 K) of [Cu(dmoxae)Mn(bpy)₂](ClO₄)₂ complex demonstrated the operation of an antiferromagnetic interaction between the adjacent manganese(II) and copper(II) ions through the oxamido-bridge within the complex. On the basis of spin Hamiltonian, $H = \alpha J \Sigma S \Sigma S'$, the magnetic analysis was carried out for the complex and the spin-coupling constant (J) was evaluated as $–36.9 \text{ cm}^{-1}$. The influence of methyl substituents in amine groups of the bridging ligand on magnetic interactions between the metal ions of this kind of complexes is also discussed.

Solvatochromism of 1-(p-Aminostyryl)pyridinium Salts

by R. Gawinecki and K. Trzebiatowska

Department of Chemistry, Technical and Agricultural University,
Seminaryjna 3, PL-85-326 Bydgoszcz, Poland
E-mail: gawiner@mail.atr.bydgoszcz.pl

(Received August 29th, 2000; revised manuscript October 5th, 2000)

Solvatochromism of eighteen 1-methyl-(p-aminostyryl)pyridinium perchlorates was studied. For each solvent the \(\tilde{\nu}_{\text{max}} \) values follow the \(\sigma^+ \) substituent constants of the amino groups present in the molecule. The \(\tilde{\nu}_{\text{max}} \) values for compounds are usually highest and lowest in water and in methylene chloride, respectively. The substituent bathochromic shifts in some solvents are as large as 5700 cm\(^{-1}\). No inverted solvatochromism is observed. Analysis of the spectra do not confirm also this effect to be negative. Dependence between the band position and solvent polarity, hydrogen bond donor acidity and hydrogen bond acceptor basicity is of low quality. There is no simple relationship between the \(\tilde{\nu}_{\text{max}} \) values and the solvent dielectric constants.
New Photosensitive Methacrylate Monomers with 4-Aminoazobenzene Type Chromophore Group

by R. Janik, S. Kucharski, A. Kubaińska and B. Lyko

Institute of Organic and Polymer Technology, Wroclaw University of Technology, ul. Wyspianskiego 27, 50-370 Wroclaw, Poland
E-mail: kucharski@itots.ch.pwr.wroc.pl

(Received June 26th, 2000; revised manuscript October 10th, 2000)

Photosensitive methacrylate monomers, derivatives of azobenzene, were synthesized. The route of syntheses was based on coupling of diazonium salts of sulfathiazole, sulfomethoxazole, sulfadiazine, 4-aminobenzoic acid and 4-nitroaniline with N-alkyl-N-[2-(methacryloyloxy)ethyl]aniline. The trans\(^\text{cis}\) isomerization of the monomers in DMSO solution was investigated by UV-VIS spectroscopy recording their spectra during illumination and thermal recovery periods. It was found that except for nitro derivatives the yield of trans\(^\text{cis}\) isomerization was ca. 50% and that the reverse reaction was a result of thermal relaxation. The spectroscopic studies were accompanied by quantum chemical calculations.
Synthesis and Transformation of 1-Monosubstituted Tetrazoles to Pyrimidinones, Benzoxazoles and Quinazolinediones Through 1,4-Disubstituted Tetrazolium Salts

by S.V. Voitekhovich, P.N. Gaponik, A.S. Lyakhov and O.A. Ivashkevich

Research Institute for Physical Chemical Problems of the Belarussian State University, 14 Leningradskaya str., 220050 Minsk, Belarus
E-mail: fhp@fhp.bsu.unibel.by

(Received January 10th, 2000; revised manuscript October 16th, 2000)

Synthesis and some new transformations of 1-aryltetrazoles into other heterocycles through 1,4-disubstituted tetrazolium salts are described. 1-Aryltetrazoles, quaternized with tert-butanol and diacetone alcohol in perchloric acid media, gave pure 1,3- or 1,4-disubstituted tetrazolium salts or their mixtures. 1,3-Disubstituted tetrazolium salts are slowly converted into the corresponding 1,4-salts under dissolving in perchloric acid. 1,4-Disubstituted tetrazolium salts are recyclized to 2-alkylaminobenzoxazoles, 3-monosubstituted 2,4-quinazolinediones and mixtures of di- and tetrahydropyrimidin-2(1H)-ones in basic conditions.

by B. Karawajczyk¹, I. Wirkus-Romanowska¹, J. Wysocki², K. Rolka¹, Z. Maćkiewicz¹, R. Głośnicka² and G. Kupryszewski¹

¹Faculty of Chemistry, University of Gdańsk, 80-952 Gdańsk, Poland
²Institute of Maritime and Tropical Medicine, 80-915 Gdynia, Poland

(Received September 7th, 2000; revised manuscript October 23rd, 2000)

The cyclic hexadecapeptide containing human heat shock protein 70(29–42) fragment cyclized by the disulfide bridge between two L-cysteine residues introduced at the N- and C-termini was synthesized by the solid phase method. It was established that the cyclic analogue, contrary to its linear counterpart, had much lower ability to generate immune response in rabbits. Conformational studies of cyclic peptide performed using 1D and 2D ¹H-NMR spectroscopy in conjunction with theoretical conformational analysis revealed that the cyclization constrained the 3D structure of this peptide, reflected by the observed rate of cis/trans isomerization of Arg9–Thr10 peptide bond and the presence of Gly7–Asn8 peptide bond in cis geometry. We, therefore, postulate that the conformational flexibility in the case of Human Heat Shock Protein fragments is a key element for their immunogenicity.
On Amination and Diazotization of Azulene and Its Derivatives

by M. Mąkosza, P.W. Osiński and S. Ostrowski

Institute of Organic Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01-224 Warszawa, Poland
fax: (+48)-22-6326681, e-mail: icho-s@icho.edu.pl

(Received October 27th, 2000)

A practical procedure for synthesis of 6-aminoazulene (3) via Vicarious Nucleophilic Substitution of Hydrogen (VNS) amination of azulene with 4-amino-1,2,4-triazole is reported. Amination with use of N,N,N-trimethylhydrazinium iodide (TMHI) of more electrophilic azulene derivatives, substituted at position 1- with CN or COPh group, afforded a mixture of 4-, 6-, and 8-aminoazulenes. Attempts to convert 6-aminoazulene (3) into diazonium salt failed, only formation of small quantities of the "auto-coupling" product, 1-(azulen-6-ylazo)-azulen-6-yl-amine, was observed.
Effect of Thermal Treatment of the Al_2O_3 and TiO_2 Supports on Properties of Dispersed Chromium Oxide in Oxidative Dehydrogenation of Isobutane

by B. Grzybowska, K. Samson, L. Keromnes, K. Wcislo, R. Dula and E.M. Serwicka

Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek, 30-239 Kraków, Poland

(Received August 31st, 2000)

Chromium oxide has been dispersed on Al_2O_3 and TiO_2 supports, heated between 500–1200°C, and the catalysts obtained have been tested in oxidative dehydrogenation of isobutane at 280°C. For the $\text{CrO}_x/\text{Al}_2\text{O}_3$ system the thermal treatment of alumina, which leads to the decrease in the specific surface area and polymorphic transformations of the initial γ-Al_2O_3 into θ, Δ and α modifications, does not affect the catalytic performance of the catalysts in the reaction under study. On the other hand, the transformation of anatase-TiO_2 into rutile-TiO_2, occurring on heating at 1000°C, leads to catalysts of a higher activity and selectivity to isobutene. Amelioration of the catalytic properties for CrO_x/rutile-TiO_2, as compared with CrO_x/anatase-TiO_2 catalysts, has been ascribed to changes in the structure of the CrO_x active centres, evidenced by ESR.
Kinetic Studies on Mechanism of Electron Transfer Between Cr\textsubscript{(aq)}2+ and [Cr(bpy)\textsubscript{3}]3+ – Ions

by J. Chatlas, A. Katafias and P. Kita

Faculty of Chemistry, N. Copernicus University, 87-100 Toruń, Poland

(Received September 7th, 2000)
Preparation, Structure and Thermal Decomposition of Zinc(II) Complex with 2,5-Dichlorobenzoic Acid

by W. Wołodkiewicz¹ and T. Glowiak²

¹Faculty of Chemistry, Maria Curie-Skłodowska University, Sq. M.C. Skłodowska 2, 20-031 Lublin, Poland
²Institute of Chemistry, University of Wrocław, 14 Joliot Curie Street, 50383 Wrocław, Poland

(Received February 4th, 2000; revised manuscript October 25th, 2000)